3,616 research outputs found

    A brief review of "little string theories"

    Get PDF
    This is a brief review of the current state of knowledge on "little string theories", which are non-gravitational theories having several string-like properties. We focus on the six dimensional maximally supersymmetric "little string theories" and describe their definition, some of their simple properties, the motivations for studying them, the DLCQ and holographic constructions of these theories and their behaviour at finite energy density. (Contribution to the proceedings of Strings '99 in Potsdam, Germany.)Comment: 11 pages, contribution to Strings '99 proceeding

    The effective string spectrum in the orthogonal gauge

    Full text link
    The low-energy effective action on long string-like objects in quantum field theory, such as confining strings, includes the Nambu-Goto action and then higher-derivative corrections. This action is diffeomorphism-invariant, and can be analyzed in various gauges. Polchinski and Strominger suggested a specific way to analyze this effective action in the orthogonal gauge, in which the induced metric on the worldsheet is conformally equivalent to a flat metric. Their suggestion leads to a specific term at the next order beyond the Nambu-Goto action. We compute the leading correction to the Nambu-Goto spectrum using the action that includes this term, and we show that it agrees with the leading correction previously computed in the static gauge. This gives a consistency check for the framework of Polchinski and Strominger, and helps to understand its relation to the theory in the static gauge.Comment: 21 page

    Deconstructing (2,0) proposals

    Get PDF
    C. P. is supported by the U.S. Department of Energy under Grant No. DE-FG02-96ER40959. M. S. S. is supported by an EURYI award of the European Science Foundatio

    Stable Non-Supersymmetric Supergravity Solutions from Deformations of the Maldacena-Nunez Background

    Get PDF
    We study a deformation of the type IIB Maldacena-Nunez background which arises as the near-horizon limit of NS5 branes wrapped on a two-cycle. This background is dual to a "little string theory" compactified on a two-sphere, a theory which at low energies includes four-dimensional N = 1 super Yang-Mills theory. The deformation we study corresponds to a mass term for some of the scalar fields in this theory, and it breaks supersymmetry completely. In the language of seven-dimensional SO(4) gauged supergravity the deformation involves (at leading order) giving a VEV, depending only on the radial coordinate, to a particular scalar field. We explicitly construct the corresponding solution at leading order in the deformation, both in seven-dimensional and in ten-dimensional supergravity, and we verify that it completely breaks supersymmetry. Since the original background had a mass gap and we are performing a small deformation, the deformed background is guaranteed to be stable even though it is not supersymmetric.Comment: 1+31 pages, one figure. v2: minor clarifications, refs adde

    Two loop partition function for large N pure Yang-Mills theory on a small three-sphere

    Full text link
    We give a direct path-integral calculation of the partition function for pure 3+1 dimensional U(N) Yang-Mills theory at large N on a small three-sphere, up to two-loop order in perturbation theory. From this, we calculate the one-loop shift in the Hagedorn/deconfinement temperature for the theory at small volume, finding that it increases (in units of the inverse sphere radius) as we go to larger coupling (larger volume). Our results also allow us to read off the sum of one-loop anomalous dimensions for all operators with a given engineering dimension in planar Yang-Mills theory on R^4. As checks on our calculation, we reproduce both the Hagedorn shift and some of the anomalous dimension sums by independent methods using the results of hep-th/0412029 and hep-th/0408178. The success of our calculation provides a significant check of methods used in hep-th/0502149 to establish a first order deconfinement transition for pure Yang-Mills theory on a small three-sphere.Comment: 40 pages, 4 figures, harvma

    "Double-trace" Deformations, Boundary Conditions and Spacetime Singularities

    Get PDF
    Double-trace deformations of the AdS/CFT duality result in a new perturbation expansion for string theory, based on a non-local worldsheet. We discuss some aspects of the deformation in the low energy gravity approximation, where it appears as a change in the boundary condition of fields. We relate unique features of the boundary of AdS to the worldsheet becoming non-local, and conjecture that non-local worldsheet actions may be generic in other classes of backgrounds.Comment: 21 pages, 2 figures, harvmac. v2: minor changes, references added, version sent to JHEP. v3 minor correction

    Exactly Marginal Deformations of N=4 SYM and of its Supersymmetric Orbifold Descendants

    Get PDF
    In this paper we study exactly marginal deformations of field theories living on D3-branes at low energies. These theories include N=4 supersymmetric Yang-Mills theory and theories obtained from it via the orbifolding procedure. We restrict ourselves only to orbifolds and deformations which leave some supersymmetry unbroken. A number of new families of N=1 superconformal field theories are found. We analyze the deformations perturbatively, and also by using general arguments for the dimension of the space of exactly marginal deformations. We find some cases where the space of perturbative exactly marginal deformations is smaller than the prediction of the general analysis at least up to three-loop order), and other cases where the perturbative result (at low orders) has a non-generic form.Comment: 25 pages, 1 figure. v2: added preprint number, references adde

    Little IIB Matrix Model

    Full text link
    We study the zero-dimensional reduced model of D=6 pure super Yang-Mills theory and argue that the large N limit describes the (2,0) Little String Theory. The one-loop effective action shows that the force exerted between two diagonal blocks of matrices behaves as 1/r^4, implying a six-dimensional spacetime. We also observe that it is due to non-gravitational interactions. We construct wave functions and vertex operators which realize the D=6, (2,0) tensor representation. We also comment on other "little" analogues of the IIB matrix model and Matrix Theory with less supercharges.Comment: 17 pages, references adde

    Short distance signatures in Cosmology: Why not in Black Holes?

    Get PDF
    Current theoretical investigations seem to indicate the possibility of observing signatures of short distance physics in the Cosmic Microwave Background spectrum. We try to gain a deeper understanding on why all information about this regime is lost in the case of Black Hole radiation but not necessarily so in a cosmological setting by using the moving mirror as a toy model for both backgrounds. The different responses of the Hawking and Cosmic Microwave Background spectra to short distance physics are derived in the appropriate limit when the moving mirror mimics a Black Hole background or an expanding universe. The different sensitivities to new physics, displayed by both backgrounds, are clarified through an averaging prescription that accounts for the intrinsic uncertainty in their quantum fluctuations. We then proceed to interpret the physical significance of our findings for time-dependent backgrounds in the light of nonlocal string theory.Comment: 10 pages, 2 figures, REVTeX 4 styl

    Gaugino Determinant in Supersymmetric Yang-Mills Theory

    Get PDF
    We resolve an ambiguity in the sign of the gaugino determinant in supersymmetric models. The result, that the gaugino determinant can be taken positive for all background gauge configurations, is necessary for application of QCD inequalities and lattice Monte Carlo methods to supersymmetric Yang-Mills models.Comment: 5 pages, LaTeX. Revised version to appear in Modern Physics Letters
    • …
    corecore